College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 8, Sequences and Series - Chapter 8 Review - Exercises - Page 641: 67

Answer

Prove that $p(1)$ is true. Prove that $p(k)$ true implies $p(k+1)$ true.

Work Step by Step

Let's note by $p(n)$ the property we want to prove: $$p(n):\text{ } 1+4+7+\cdots+(3n-2)=\dfrac{n(3n-1)}{2}.$$ $\textbf{Step 1:}$ Prove $p(1)$ is true. Set $n=1$ on each side and check if the property is verified: $$\begin{align*} 3(1)-2&\stackrel{?}{=}\dfrac{1(3(1)-1)}{2}\\ 1&=1\checkmark. \end{align*}$$ Therefore $p(1)$ is true. $\textbf{Step 2:}$ Prove that if $p(k)$ is true, then $p(k+1)$ is true. We assumed $p(k)$ is true: $$p(k):\text{ } 1+4+7+\cdots+(3k-2)=\dfrac{k(3k-1)}{2}.\tag1$$ We have to prove: $$p(k+1):\text{ } 1+4+7+\cdots+(3k-2)+(3(k+1)-2)=\dfrac{(k+1)(3(k+1)-1)}{2}.$$ $$p(k+1):\text{ } 1+4+7+\cdots+(3k-2)+(3k+1)=\dfrac{(k+1)(3k+2)}{2}.\tag2$$ In Eq. $(1)$ add the term $(3k+1)$ on each side: $$\begin{align*} 1+4+7+\cdots+(3k-2)+(3k+1)&=\dfrac{k(3k-1)}{2}+(3k+1)\\ 1+4+7+\cdots+(3k-2)+(3k+1)&=\dfrac{3k^2-k+6k+2}{2}\\ 1+4+7+\cdots+(3k-2)+(3k+1)&=\dfrac{3k^2+5k+2}{2}\\ 1+4+7+\cdots+(3k-2)+(3k+1)&=\dfrac{(k+1)(3k+2)}{2}. \end{align*}$$ We got Eq. $(2)$, therefore if $p(k)$ is true, then $p(k+1)$ is also true. Both steps being proved, the given formula is true for any natural number $n$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.