Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - Chapter Test - Page 491: 7

Answer

The graph of $y=-(2)^{x+2}$ involves (i) a $2$-unit shift to the left and (ii) a reflection about the $x$-axis of the parent function $y=2^x$. The given function has: domain: $(-\infty, +\infty)$; range: $y\lt 0$; and horizontal asymptote: $y=0$

Work Step by Step

Recall: (1) The graph of the function $y=f(x+h)$ involves a horizontal shift ($h$ units to the left when $h \gt0$, $|h|$ units to the right when $h\lt0$) of the parent function $y=f(x)$. (2) The graph of the function $y=-f(x)$ involves a reflection about the $x$-axis of the parent function $y=f(x)$. The given function has $f(x)=2^x$ as its parent function and can be written as $y=-f(x+2)$. Thus, the graph of the given function involves (i) a $2$-unit shift to the left and (ii) a reflection about the $x$-axis of the parent function $f(x)=\left(\frac{1}{2}\right)^x$. Recall: The function is $y=a^x$ has: (1) domain: $(-\infty, +\infty)$; (2) range: $y\gt 0$; and (3) horizontal asymptote: $y=0$ With a horizontal shift $1$ unit to the left and a reflection about the $x$-axis of the parent function $f(x)=2^x$, the function $y=-2^{x+2}$ has: (1) domain: $(-\infty, +\infty)$; (2) range: $y\lt 0$; and (3) horizontal asymptote: $y=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.