Answer
$\text{exponential decay}$;
$y$-intercept = $2$
Work Step by Step
RECALL:
The exponential function $y=c \cdot a^x$ represents an exponential:
(i) decay when $0\lt a \lt 1$;
(ii) growth when $a \gt 1$
The given function can be written as:
\begin{align*}
y&=2\left(6\right)^{-1(x)}\\
y&=2\left(6^{-1}\right)^x\\
y&=2\left(\frac{1}{6}\right)^x
\end{align*}
Thus, the given exponential function has $a=\frac{1}{6}$ which is less than $1$.
Thus, the given function represents exponential decay.
The $y$-intercept of a function can be found by sestting $x=0$ then solving for $y$.
Hence, the $y$-intercept is
\begin{align*}
y&=2 \cdot \left(6\right)^{-x}\\
y&=2 \cdot 6^0\\
y&=2 \cdot 1\\
y&=2
\end{align*}