Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - Chapter Test - Page 491: 5

Answer

The graph of $y=3^x+2$ involves a $2$-unit shift upward of the parent function $f(x)=3^x$. The given function has: domain: $(\infty, +\infty)$ range: $(2, +\infty)$ horizontal asymptote: $y=2$

Work Step by Step

Recall: The graph of the function $y=f(x)+k$ involves a vertical shift ($k$ units upward when $k \gt0$, $|k|$ units downward when $k\lt0$) of the parent function $y=f(x)$. The given function has $f(x)=3^x$ as its parent function and can be written as $y=f(x)+2$. With $k=2$, the graph of the given function involves a $2$-unit shift upward of the parent function $f(x)=3^x$. Recall: The function is $y=a^x$ has: (1) domain: $(-\infty, +\infty)$; (2) range: $y\gt 0$; and (3) horizontal asymptote: $y=0$ With a vertical shift of the parent function $f(x)=3^x$ of $2$ units upward, the function $y=3^x+2$ has: (1) domain: $(-\infty, +\infty)$; (2) range: $y\gt 2$; and (3) horizontal asymptote: $y=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.