Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - Chapter Test - Page 491: 6

Answer

The graph of $y=\left(\frac{1}{2}\right)^{x+1}$ involves a $1$-unit shift to the left of the parent function $y=\left(\frac{1}{2}\right)^{x}$ The given function has: domain: $(-\infty, +\infty)$; range: $y\gt 0$; and horizontal asymptote: $y=0$

Work Step by Step

Recall: The graph of the function $y=f(x+h)$ involves a horizontal shift ($h$ units to the left when $h \gt0$, $|h|$ units to the right when $h\lt0$) of the parent function $y=f(x)$. The given function has $f(x)=\left(\frac{1}{2}\right)^x$ as its parent function and can be written as $y=f(x+1)$. With $h=1$, the graph of the given function involves a $1$-unit shift to the left of the parent function $f(x)=\left(\frac{1}{2}\right)^x$. Recall: The function is $y=a^x$ has: (1) domain: $(-\infty, +\infty)$; (2) range: $y\gt 0$; and (3) horizontal asymptote: $y=0$ With a horizontal shift of the parent function $f(x)=\left(\frac{1}{2}\right)^x$ of $1$ units upward, the function $y=\left(\frac{1}{2}\right)^{x+1}$ has: (1) domain: $(-\infty, +\infty)$; (2) range: $y\gt 0$; and (3) horizontal asymptote: $y=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.