Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 24 - Electric Potential - Problems - Page 715: 83c

Answer

$U = 2.42\times 10^{-29}~J$

Work Step by Step

We can write a general expression for the electric potential energy of a system of charged particles: $U = \frac{1}{4\pi~\epsilon_0}~\sum \frac{q_i~q_j}{r_{ij}}$ We can find the distance $d$ between $q_1$ and $q_2$: $d = \sqrt{d_1^2+d_2^2}$ $d = \sqrt{(4.00~m)^2+(2.00~m)^2}$ $d = 4.47~m$ We can find the electric potential energy of the three-particle system: $U = \frac{1}{4\pi~\epsilon_0}~(\frac{q_1~q_3}{d_1}+ \frac{q_2~q_3}{d_2}+ \frac{q_1~q_2}{4.47~m})$ $U = \frac{1}{(4\pi)~(8.854\times 10^{-12}~C/V~m)}~[\frac{(-2)(1.6\times 10^{-19}~C)(2)(1.6\times 10^{-19}~C)}{4.00~m}+ \frac{(2)(1.6\times 10^{-19}~C)(2)(1.6\times 10^{-19}~C)}{2.00~m}+ \frac{(-2)(1.6\times 10^{-19}~C)(2)(1.6\times 10^{-19}~C)}{4.47~m}]$ $U = 2.42\times 10^{-29}~J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.