Answer
$K = 3.3~J$
Work Step by Step
We can find the rotational inertia:
$I = 2M~L^2+2M~L^2+M(2L)^2$
$I = 8M~L^2$
$I = (8)(1.6~kg)(0.60~m)^2$
$I = 4.608~kg~m^2$
We can find the rotational kinetic energy:
$K = \frac{1}{2}~I~\omega^2$
$K = (\frac{1}{2})~(4.608~kg~m^2)~(1.2~rad/s)^2$
$K = 3.3~J$