Answer
$I = 0.054~kg~m^2$
Work Step by Step
We can find the tension in the cord:
$mg~sin~\theta-T = ma$
$T = mg~sin~\theta-ma$
$T = (2.0~kg)(9.8~m/s^2)~sin~20^{\circ}-(2.0~kg)(2.0~m/s^2)$
$T = 2.70~N$
We can find the rotational inertia of the wheel:
$\tau = I~\alpha$
$R~T = (I)~(\frac{a}{R})$
$I = \frac{R^2~T}{a}$
$I = \frac{(0.20~m)^2~(2.70~N)}{2.0~m/s^2}$
$I = 0.054~kg~m^2$