Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Problems - Page 292: 80c

Answer

The initial angular position is $~~2.50~rad$

Work Step by Step

We can find the average angular speed: $\omega_{ave} = \frac{\theta_2-\theta_1}{t}$ $\omega_{ave} = \frac{70.0~rad-10.0~rad}{6.00~s}$ $\omega_{ave} = 10.0~rad/s$ We can find $\omega_1$ the angular velocity at $\theta_1$: $\omega_{ave} = \frac{\omega_1+\omega_2}{2} = 10.0~rad/s$ $\omega_1 = (2)(10.0~rad/s)-\omega_2$ $\omega_1 = (2)(10.0~rad/s)-(15.0~rad/s)$ $\omega_1 = 5.00~rad/s$ The angular velocity at $\theta_1$ is $~~5.00~rad/s$ We can find the angular acceleration $\alpha$: $\omega_2 = \omega_1+\alpha~t$ $\alpha = \frac{\omega_2 - \omega_1}{t}$ $\alpha = \frac{15.0~rad/s - 5.00~rad/s}{6.00~s}$ $\alpha = 1.667~rad/s^2$ We can find the time to reach an angular velocity of $5.0~rad/s$ from rest: $t = \frac{5.00~rad/s}{1.667~rad/s^2} = 3.00~s$ We can find the angular displacement in the first $3.00~s$ of the acceleration period: $\theta = \frac{1}{2}\alpha~t^2$ $\theta = \frac{1}{2}(1.667~rad/s^2)~(3.00~s)^2$ $\theta = 7.50~rad$ We can find the initial angular position: $\theta_0 = 10.0~rad-7.50~rad = 2.50~rad$ The initial angular position is $~~2.50~rad$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.