Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 17 - Additional Aspects of Aqueous Equilibria - Exercises - Page 768: 17.23a

Answer

The pH of that buffer solution is equal to 5.26

Work Step by Step

$500$ mL = $500 \times 10^{-3}$ L = 0.500 L 1. Calculate the molar mass $(CH_3COONa)$: 12.01* 1 + 1.008* 3 + 12.01* 1 + 16.00*2 + 22.99* 1 = 82.03g/mol 2. Calculate the number of moles $(CH_3COONa)$ $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{ 20.0}{ 82.03}$ $n(moles) = 0.244$ 3. Find the concentration in mol/L $(CH_3COONa)$: $C(mol/L) = \frac{n(moles)}{volume(L)}$ $ C(mol/L) = \frac{ 0.244}{ 0.500} $ $C(mol/L) = 0.488$ ** Since $CH_3COONa$ is a strong electrolyte: $[CH_3COO^-]_{initial} = 0.488M$ 4. Drawing the ICE table we get these concentrations at the equilibrium: $CH_3COOH(aq) + H_2O(l) \lt -- \gt CH_3COO^-(aq) + H_3O^+(aq)$ Remember: Reactants at equilibrium = Initial Concentration - x And Products = Initial Concentration + x $[CH_3COOH] = 0.150 M - x$ $[CH_3COO^-] = 0.488M + x$ $[H_3O^+] = 0 + x$ 5. Calculate 'x' using the $K_a$ expression. $ 1.8\times 10^{- 5} = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$ $ 1.8\times 10^{- 5} = \frac{( 0.488 + x )* x}{ 0.15 - x}$ Considering 'x' has a very small value. $ 1.8\times 10^{- 5} = \frac{ 0.488 * x}{ 0.150}$ $\frac{ 1.8\times 10^{- 5} * 0.150}{ 0.488} = x$ $x = 5.53\times 10^{- 6}$ Percent dissociation: $\frac{ 5.53\times 10^{- 6}}{ 0.150} \times 100\% = 3.69\times 10^{- 3}\%$ x = $[H_3O^+]$ 6. Calculate the pH value $pH = -log[H_3O^+]$ $pH = -log( 5.53 \times 10^{- 6})$ $pH = 5.26$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.