Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 17 - Additional Aspects of Aqueous Equilibria - Exercises - Page 768: 17.16c

Answer

The pH of that solution is equal to 3.82

Work Step by Step

1000ml = 1L 55ml = 0.055 L 125ml = 0.125 L 1. Find the numbers of moles of each compound: $C(HF) * V(HF) = 0.050*0.055 = 2.75 \times 10^{-3}$ moles $C(NaF) * V(NaF) = 0.10*0.125 = 0.0125$ moles 2. Calculate the total volume: - Total volume: 0.055 + 0.125 = 0.180L 3. Calculate the final concentrations: $[HF] : \frac{2.75 \times 10^{-3}}{0.180} = 0.0153M $ $[NaF] : \frac{0.0125}{0.180} = 0.0694M $ - Since $NaF$ is a strong electrolyte: $[NaF] = [F^-] = 0.0694M$ 4. Drawing the ICE table we get these concentrations at the equilibrium: $HF(aq) + H_2O(l) \lt -- \gt F^-(aq) + H_3O^+(aq)$ Remember: Reactants at equilibrium = Initial Concentration - x And Products = Initial Concentration + x $[HF] = 0.0153 M - x$ $[F^-] = 0.0694M + x$ $[H_3O^+] = 0 + x$ 5. Calculate 'x' using the $K_a$ expression. $ 6.8\times 10^{- 4} = \frac{[F^-][H_3O^+]}{[HF]}$ $ 6.8\times 10^{- 4} = \frac{( 0.0694 + x )* x}{ 0.0153 - x}$ Considering 'x' has a very small value. $ 6.8\times 10^{- 4} = \frac{ 0.0694 * x}{ 0.0153}$ $ 6.8\times 10^{- 4} = 4.54x$ $\frac{ 6.8\times 10^{- 4}}{ 4.54} = x$ $x = 1.5\times 10^{- 4}$ Percent dissociation: $\frac{ 1.5\times 10^{- 4}}{ 0.015} \times 100\% = 0.98\%$ x = $[H_3O^+]$ 6. Calculate the pH value $pH = -log[H_3O^+]$ $pH = -log( 1.5 \times 10^{- 4})$ $pH = 3.82$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.