Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 85: 3-99

Answer

$$F(x)=\left\{\begin{array}{ll}{0} & {x<0} \\ {0.125} & {0 \leq x<1} \\ {0.5} & {1 \leq x<2} \\ {0.875} & {2 \leq x<3} \\ {1} & {x \geq 3}\end{array}\right.$$

Work Step by Step

Determine the probability mass function of the random variable with binomial distributions with the parameters $n=3, p=0.25 :$ $$f(x)=\left(\begin{array}{c}{3} \\ {x}\end{array}\right) 0.25^{x} \times 0.75^{3-x}, \quad x=0,1,2,3$$ Calculate the cdf: $$F(x)=\left\{\begin{array}{ll}{0} & {x<0} \\ {f(0)=0.421875} & {0 \leq x<1} \\ {0.421875+f(1)=0.84375} & {1 \leq x<2} \\ {0.84375+f(2)=0.984375} & {2 \leq x<3} \\ {1} & {x \geq 3}\end{array}\right.$$ $$F(x)=\left\{\begin{array}{ll}{0} & {x<0} \\ {0.125} & {0 \leq x<1} \\ {0.5} & {1 \leq x<2} \\ {0.875} & {2 \leq x<3} \\ {1} & {x \geq 3}\end{array}\right.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.