Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 85: 3-95

Answer

a) $2.4 \times 10^{-8}$ b) $0.9999$ c) $9.91 \times 10^{-18}$ d) $1.14 \times 10^{-4}$

Work Step by Step

$X$ is binomial random variable with the parameters: $n=10, p=0.01$ Calculate: (a) $$ \mathbb{P}(X=5)=\left(\begin{array}{c}{10} \\ {5}\end{array}\right) 0.01^{5} 0.99^{5}=\left[2.4 \times 10^{-8}\right] $$ ______________________________________________________ (b) $\begin{aligned} \mathbb{P}(X \leq 2) &=\mathbb{P}(X=0)+\mathbb{P}(X=1)+\mathbb{P}(X=2)=\\ &=\left(\begin{array}{c}{10} \\ {0}\end{array}\right) 0.01^{0} 0.99^{10}+\left(\begin{array}{c}{10} \\ {1}\end{array}\right) 0.01^{1} 0.99^{9}+\left(\begin{array}{c}{10} \\ {2}\end{array}\right) 0.01^{2} 0.99^{8}=0.9999 \end{aligned}$ ______________________________________________________ (c) $\begin{aligned} \mathbb{P}(X \geq 9) &=\mathbb{P}(X=9)+\mathbb{P}(X=10)=\\ &=\left(\begin{array}{c}{10} \\ {9}\end{array}\right) 0.01^{9} 0.99^{1}+\left(\begin{array}{c}{10} \\ {10}\end{array}\right) 0.01^{10} 0.99^{0}=9.91 \times 10^{-18} \end{aligned}$ ______________________________________________________ (d) $\begin{aligned} \mathbb{P}(3 \leq X<5) &=\mathbb{P}(X=3)+\mathbb{P}(X=4)=\\ &=\left(\begin{array}{c}{10} \\ {3}\end{array}\right) 0.01^{3} 0.99^{7}+\left(\begin{array}{c}{10} \\ {4}\end{array}\right) 0.01^{4} 0.99^{6}=1.14 \times 10^{-4} \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.