Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 85: 3-105

Answer

a) $p(X\geq 1)\approx 1$ b)$p(X\geq 3)\approx 0.9999$ c) the mean, $=12.244$ the std. $=2.179$

Work Step by Step

$p(X=x)=\frac{20!}{x!(20−x)!}(0.6122)^{x}(0.3878)^{20−x},x=0,1,...,20$ a) $p(X\geq 1)=1-p(x=0)=1-\frac{20!}{0!(20)!}(0.6122)^{0}(0.3878)^{20}\approx 1$ b)$p(X\geq 3)=1-p(x\lt 3)=1-[p(x=0)+p(x=1)+p(x=2)] \approx 0.9999$ c) the mean, $E(x)=n.p=20(0.6122)=12.244$ the std. $= \sqrt {v(x)}=\sqrt {n.p.(1-p)}=\sqrt {20(0.6122)(0.3878)}=2.179$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.