Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 85: 3-107

Answer

a)Binomial distribution with $n=10^{9}$, $p=\frac{10000}{36^6}\approx 4.59\times 10^{-6}$ b) $p(X=0)\approx 0$ c) $E(x)\approx 4595$ $V(x)\approx 4595$

Work Step by Step

Let X be the random variable of the number of users' passwords hits. then X is distributed as binomial distribution with $n=10^{9}$, and we can determine p as follows, number of available passwords $={(10+26)}^{6}=36^6$ $p=\frac{10000}{36^6}\approx 4.59\times 10^{-6}$ this means that $p(X=x)=\frac{10^{9}}{x!(10^{9}-x)!}(\frac{10000}{36^6})^x(1-\frac{10000}{36^6})^{10^{9}-x},x=0,1,...,10^{9}$ b) $p(X=0)=(1-\frac{10000}{36^6})^{10^{9}-x}\approx 0$ c) $E(x)=np=10^{9}(\frac{10000}{36^6})\approx 4595$ $V(x)=np(1-p)=10^{9}(\frac{10000}{36^6})\times(1-\frac{10000}{36^6})\approx 4595$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.