Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 85: 3-94

Answer

a) $0.246$ b) $0.055$ c) $0.01$ d) $0.322$

Work Step by Step

$X$ is binomial random variable with the parameters: $n=10, p=0.5 .$ Calculate: (a) $$ \mathbb{P}(X=5) =\left(\begin{array}{c}{10} \\ {5}\end{array}\right) 0.5^{10}=0.246$$ ________________________________________________________ (b) $$ \mathbb{P}(X \leq 2) =\mathbb{P}(X=0)+\mathbb{P}(X=1)+\mathbb{P}(X=2)=\\ =\left(\begin{array}{c}{10} \\ {0}\end{array}\right) 0.5^{10}+\left(\begin{array}{c}{10} \\ {1}\end{array}\right) 0.5^{10}+\left(\begin{array}{c}{10} \\ {2}\end{array}\right) 0.5^{10}=0.055 $$ ________________________________________________________ (c) $$\mathbb{P}(X \geq 9)= \mathbb{P}(X=9)+\mathbb{P}(X=10)=\\=\left(\begin{array}{c}{10} \\ {9}\end{array}\right) 0.5^{10}+\left(\begin{array}{c}{10} \\ {10}\end{array}\right) 0.5^{10}=0.01 $$ ________________________________________________________ (d) $$\mathbb{P}(3 \leq X\lt5)=\mathbb{P}(X=3)+\mathbb{P}(X=4)=\\=\left(\begin{array}{c}{10} \\ {3}\end{array}\right) 0.5^{10}+\left(\begin{array}{c}{10} \\ {4}\end{array}\right) 0.5^{10}=0.322 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.