Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 85: 3-103

Answer

a) $0.4096$ b) $0.218$ c) $0.37$

Work Step by Step

Let $X$ be the random variable of number(amount to) of days (out of total of $n$ days) when the green light is observed. $X$ has the binomial distribution with parameters $n, p=0.2 .$ The (chance)probability mass function of $X$ is stated by: $$\mathbb{P}(X=k)=\left(\begin{array}{c}{n} \\ {k}\end{array}\right) 0.2^{k} \times 0.8^{n-k}, k=0,1, \ldots, n$$ Calculate using this formula: (a) $\operatorname{Set} n=5 :$ $\mathbb{P}(X=1)=\left(\begin{array}{l}{5} \\ {1}\end{array}\right) 0.2^{1} \times 0.8^{4}=[0.4096]$ ____________________________________________________ (b) $\operatorname{Set} n=20 :$ $\mathbb{P}(X=4)=\left(\begin{array}{c}{20} \\ {4}\end{array}\right) 0.2^{4} \times 0.8^{16}=0.218$ ____________________________________________________ (c) $\operatorname{Set} n=20 :$ $\mathbb{P}(X>4)=1-\mathbb{P}(X \leq 4)=$ $\quad \quad =1-\mathbb{P}(X=0)-\mathbb{P}(X=1)-\mathbb{P}(X=2)-\mathbb{P}(X=3)-\mathbb{P}(X=4)=$ $\quad\quad =0.37$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.