Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.3 - Double-Angle, Half-Angle, and Product-Sum Formulas - 7.3 Exercises - Page 562: 96

Answer

$(1-\cos 4x)(2 + \tan^2 x+\cot^2 x)=8$

Work Step by Step

Here, we have $(1-\cos 4x)(2 + \tan^2 x+\cot^2 x)=(1-\cos 4x)(2 + \tan^2 x+\dfrac{1}{\tan^2 x})$ or, $(1-\cos 4x)(1+\tan^2 x)^2(\dfrac{1}{\tan^2 x})=(1-\cos 4x)(1+\dfrac{1-\cos 2x}{1+\cos 2x})^2(\dfrac{1}{\tan^2 x})$ or, $(1-\cos 4x)(1+\dfrac{1-\cos 2x}{1+\cos 2x})^2(\dfrac{1}{\tan^2 x})=(1-\cos 4x)(\dfrac{2}{1+\cos 2x})^2(\dfrac{1}{\tan^2 x})$ or, $(1-\cos 4x)(\dfrac{2}{1+\cos 2x})^2(\dfrac{1}{\tan^2 x})=(1-\cos 4x)\dfrac{4}{(1+\cos 2x)^2}\cdot \dfrac{1}{\tan^2 x}$ or,$(1-\cos 4x)\dfrac{4}{(1+\cos 2x)^2}\cdot \dfrac{1}{\tan^2 x}=2(\dfrac{1-\cos 4x}{2})\dfrac{4}{(1+\cos 2x)^2}\cdot \dfrac{1}{\tan^2 x}$ or, $\dfrac{8\sin^2 x}{(1+\cos 2x)^2}\cdot \dfrac{1}{\tan^2 x}=\dfrac{8(1-\cos 2x)}{(1+\cos 2x)}\cdot \dfrac{1}{\tan^2 x}$ or,$\dfrac{8(1-\cos 2x)}{(1+\cos 2x)}\cdot \dfrac{1}{\tan^2 x}=\dfrac{8\tan^2 x}{\tan^2 x}$ Thus, $(1-\cos 4x)(2 + \tan^2 x+\cot^2 x)=8$ Hence, the result has been proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.