Answer
See explanation
Work Step by Step
Let $u = arcsin(x$) and $x = \sin(u)$, then
$2u = arccos(1-2x^2)$
$\cos(2u)=1-2x^2$
Use Cosine double angle identity: $\cos(2u)=1-2\sin^2(u)$
$1-2\sin^2(u)=1-2x^2$
Since $x = \sin(u)$
then,
$1-2\sin^2(u)=1-2\sin^2(u)$, Proving the identity