Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.3 - Double-Angle, Half-Angle, and Product-Sum Formulas - 7.3 Exercises - Page 562: 109

Answer

a) $8\cos^4x-8\cos^2 x+1$ b) $16\cos^5x-20\cos^3x+5\cos x$

Work Step by Step

a) $\cos(4x) =\cos(2\cdot2x)$ $=2\cos^2(2x)-1 $ $=2(2\cos^2x-1)^2-1$ $=2(4\cos^4x-4\cos^2 x+1)-1$ $=8\cos^4x-8\cos^2 x+2-1$ $=8\cos^4x-8\cos^2 x+1$ b) $\cos(5x)=\cos(2x+3x)$ $=\cos(2x)\cos(3x)-\sin(2x)\sin(3x)$ $\cos(2x)=2\cos^2x-1$ $\cos(3x)=4\cos^3x-3\cos x$ $\sin (2x)=2\sin x\cos x$ $\sin(3x)=3\sin x-4\sin^3 x$ Substitute: $\cos(5x)=(2\cos^2x-2)(4\cos^3x-3\cos x)-2\sin x\cos x(3\sin x-4\sin^3 x)$ $=16\cos^5x-20\cos^3x+5\cos x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.