Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Section 6.4 - Inverse Trigonometric Functions and Right Triangles - 6.4 Exercises - Page 507: 44

Answer

(a) $\theta=cos^{-1}(\frac{3960}{h+3960})$ (b) $s=7920\cdot \theta$ (c) $s=7920\cdot cos^{-1}(\frac{3960}{h+3960})$ (d) $1761$ mi. (e) $197$ mi.

Work Step by Step

(a) Use the figure given with the problem and use $R$ for the radius of the earth, we have $cos\theta=\frac{R}{R+h}=\frac{3960}{h+3960}$ and $\theta=cos^{-1}(\frac{3960}{h+3960})$ (b) Clearly $\frac{s}{2}=R\theta$ ($\theta$ in radian) and we have $s=2\times3960\times\theta=7920\cdot \theta$ (c) Combine the results from (a) and (b), we have $s=7920\cdot cos^{-1}(\frac{3960}{h+3960})$ (d) Given $h=100$, use the relationship in (c) to get $s=7920\cdot cos^{-1}(\frac{3960}{100+3960})\approx1761$ mi (e) Given $s=2450$, we have $2450=7920\cdot cos^{-1}(\frac{3960}{h+3960})$ which leads to $\frac{3960}{h+3960}=cos(\frac{2450}{7920})=0.9525$ and $h=\frac{3960}{0.9525}-3960\approx197$ miles
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.