Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Section 6.4 - Inverse Trigonometric Functions and Right Triangles - 6.4 Exercises - Page 507: 34

Answer

$\frac{\sqrt 5}{2}$

Work Step by Step

Given expression is- $\cot(\sin^{-1}\frac{2}{3})$ Assuming $\sin^{-1} \frac{2}{3}$ = $u$ , we get- $\sin u$ = $\frac{2}{3}$, [$-\frac{\pi}{2}\leq u\leq \frac{\pi}{2}$] From First Pythagorean identity- $\cos u$ = + $\sqrt {1 - \sin^{2} u}$ = $\sqrt {1 - (\frac{2}{3})^{2}} $ = $\sqrt {1 - \frac{4}{9}} $ = $\sqrt { \frac{9 - 4}{9}} $ = $\sqrt { \frac{5}{9}} $ = $\frac{\sqrt 5}{3}$ i.e. $\cos u$ = $\frac{\sqrt 5}{3}$ We know that, $\cot u$ = $\frac{\cos u}{\sin u}$ = $\frac{\frac{\sqrt 5}{3}}{\frac{2}{3}}$ = $\frac{\sqrt 5\times3}{3\times 2}$ i.e. $\cot u$ = $\frac{\sqrt 5}{2}$ i.e. $\cot(\sin^{-1}\frac{2}{3})$ = $\frac{\sqrt 5}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.