Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Section 6.4 - Inverse Trigonometric Functions and Right Triangles - 6.4 Exercises - Page 507: 30

Answer

$\frac{3}{5}$

Work Step by Step

Given expression is- $\cos(\tan^{-1}\frac{4}{3})$ Assuming $\tan^{-1} \frac{4}{3}$ = $u$ , we get- $\tan u$ = $\frac{4}{3}$, [$-\frac{\pi}{2}\leq u\leq \frac{\pi}{2}$] Therefore $\cos u$ will be positive. From second Pythagorean identity- $1 + \tan^{2} u$ = $\sec^{2} u$ i.e. $1 + \tan^{2} u$ = $\frac{1}{\cos^{2} u}$ i.e. $\cos^{2} u$ = $\frac{1}{1 + \tan^{2} u}$ $\cos u$ = + $\sqrt {\frac{1}{1 + \tan^{2} u}}$ = $\sqrt {\frac{1}{1 + (\frac{4}{3})^{2}}}$ = $\sqrt {\frac{1}{1 + \frac{16}{9}}}$ = $\sqrt {\frac{1}{\frac{9+16}{9}}}$ = $\sqrt {\frac{1}{\frac{25}{9}}}$ = $\sqrt {\frac{9}{25}}$ = $\frac{3}{5}$ i.e. $\cos u$ = $\frac{3}{5}$ i.e. $\cos(\tan^{-1}\frac{4}{3})$ = $\frac{3}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.