Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Section 6.4 - Inverse Trigonometric Functions and Right Triangles - 6.4 Exercises - Page 507: 31

Answer

$\frac{13}{5}$

Work Step by Step

Given expression is- $\sec(\sin^{-1}\frac{12}{13})$ Assuming $\sin^{-1} \frac{12}{13}$ = $u$ , we get- $\sin u$ = $\frac{12}{13}$, [$-\frac{\pi}{2}\leq u\leq \frac{\pi}{2}$] Therefore $\sec u$ will be positive. From First Pythagorean identity- $\cos u$ = + $\sqrt {1 - \sin^{2} u}$ = $\sqrt {1 - (\frac{12}{13})^{2}} $ = $\sqrt {1 - \frac{144}{169}} $ = $\sqrt { \frac{169 - 144}{169}} $ = $\sqrt { \frac{25}{169}} $ = $\frac{5}{13}$ i.e. $\cos u$ = $\frac{5}{13}$ Therefore $\sec u$ = $\frac{1}{\cos u}$ = $\frac{1}{\frac{5}{13}}$ i.e. $\sec u$ = $\frac{13}{5}$ i.e. $\sec(\sin^{-1}\frac{12}{13})$ = $\frac{13}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.