Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 4 - Section 4.4 - Laws of Logarithms - 4.4 exercises - Page 359: 56


$\log_5 (\frac{x^2y^4}{z^6})$

Work Step by Step

$Combine$ $the$ $expression$: $2$$($$\log_5 x$ + $2$$\log_5 y$ - $3$$\log_5 z$$)$ Distribute the 2 to all variables in the parenthesis $2$$\log_5 x$ + $2$$\times$$2$$\log_5 y$ - $2$$\times$$3$$\log_5 z$ $2$$\log_5 x$ + $4$$\log_5 y$ - $6$$\log_5 z$ Apply the Third Law of Logarithms for $2$$\log_5 x$, $4$$\log_5 y$, and $6$$\log_5 z$ $2$$\log_5 x$ = $\log_5 x^2$ $4$$\log_5 y$ = $\log_5 y^4$ $6$$\log_5 z$ = $\log_5 x^6$ $\log_5 x^2$ + $\log_5 y^4$ - $\log_5 z^6$ Apply the First Law of Logarithms for $\log_5 x^2$ + $\log_5 y^4$ $\log_5 x^2$ + $\log_5 y^4$ = $\log_5 (x^2\times y^4)$ $\log_5 (x^2y^4)$ - $\log_5 z^6$ Apply the Second Law of Logarithms $\log_5 (x^2y^4)$ - $\log_5 z^6$ = $\log_5 (\frac{x^2y^4}{z^6})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.