Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 6 - Analytic Trigonometry - Section 6.3 Trigonometric Equations - 6.3 Assess Your Understanding - Page 488: 41

Answer

$\theta=k\pi+\frac{\pi}{3}$ or $k\pi+\frac{2\pi}{3}$ (k is an integer), $\theta=\frac{\pi}{3}, \frac{2\pi}{3},\frac{4\pi}{3}, \frac{5\pi}{3},\frac{7\pi}{3}, \frac{8\pi}{3}$.

Work Step by Step

$cos(2\theta)=-\frac{1}{2}$, $2\theta=2k\pi+\frac{2\pi}{3}$ or $2k\pi+\frac{4\pi}{3}$, $\theta=k\pi+\frac{\pi}{3}$ or $k\pi+\frac{2\pi}{3}$ (k is an integer), Six examples: $\theta=\frac{\pi}{3}, \frac{2\pi}{3},\frac{4\pi}{3}, \frac{5\pi}{3},\frac{7\pi}{3}, \frac{8\pi}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.