Answer
O.A. $y=2x+7$
Work Step by Step
Given $y=\frac{8x^2+26x-7}{4x-1}=\frac{(4x-1)(2x+7)}{4x-1}=2x+7, x\ne\frac{1}{4}$,
we can find its vertical asymptote(s) V.A. $none$, horizontal asymptote(s) H.A. $none$, oblique asymptote(s) O.A. $y=2x+7$ (the graph of the function is actually identical to this line except for a hole).