Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 887: 89

Answer

\[{\text{The area of the triangle is 1uni}}{{\text{t}}^2}\]

Work Step by Step

\[\begin{gathered} {\text{Let the points }}P\left( {\underbrace 0_{{x_1}},\underbrace 0_{{y_1}}} \right),\,\,Q\left( {\underbrace 0_{{x_2}},\underbrace 2_{{y_2}}} \right),\,\,R\left( {\underbrace 1_{{x_3}},\underbrace 4_{{y_3}}} \right) \hfill \\ {\text{Calcule the area using}} \hfill \\ D = \frac{1}{2}\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1 \\ {{x_2}}&{{y_2}}&1 \\ {{x_3}}&{{y_3}}&1 \end{array}} \right| \hfill \\ {\text{Substitute the values}} \hfill \\ 2D = \left| {\begin{array}{*{20}{c}} 0&0&1 \\ 0&2&1 \\ 1&4&1 \end{array}} \right| \hfill \\ {\text{Calculate the determinant}} \hfill \\ 2D = 0\left| {\begin{array}{*{20}{c}} 2&1 \\ 4&1 \end{array}} \right| - 0\left| {\begin{array}{*{20}{c}} 0&1 \\ 1&1 \end{array}} \right| + 1\left| {\begin{array}{*{20}{c}} 0&2 \\ 1&4 \end{array}} \right| \hfill \\ 2D = \left( 0 \right)\left( 4 \right) - \left( 2 \right)\left( 1 \right) \hfill \\ 2D = - 2 \hfill \\ D = - 1 \hfill \\ {\text{Calculate the absolute value of }}D \hfill \\ D = 1 \hfill \\ {\text{The area of the triangle is 1uni}}{{\text{t}}^2} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.