Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.8 - Inverse Functions - Exercise Set - Page 272: 98


The value of x which satisfies the equation $8+{{f}^{-1}}\left( x-1 \right)=10$ is $x=7$.

Work Step by Step

$8+{{f}^{-1}}\left( x-1 \right)=10$ Solve the equation further, $\begin{align} & {{f}^{-1}}\left( x-1 \right)=10-8 \\ & {{f}^{-1}}\left( x-1 \right)=2 \\ \end{align}$ (I) Also, $f\left( 2 \right)=6$ Take the inverse of the above function ${{f}^{-1}}\left( f\left( 2 \right) \right)={{f}^{-1}}\left( 6 \right)$ As ${{f}^{-1}}\left( f\left( x \right) \right)=x$, therefore${{f}^{-1}}\left( f\left( 2 \right) \right)=2$ And, $2={{f}^{-1}}\left( 6 \right)$ From (1), ${{f}^{-1}}\left( x-1 \right)=2$ And, $2={{f}^{-1}}\left( 6 \right)$ So, ${{f}^{-1}}\left( x-1 \right)={{f}^{-1}}\left( 6 \right)$ Now compare both sides, $\begin{align} & x-1=6 \\ & x=1+6 \\ & x=7 \end{align}$ Thus, the value of x = 7 satisfies $8+{{f}^{-1}}\left( x-1 \right)=10$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.