University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 42

Answer

$$128 \pi $$

Work Step by Step

$ g(x,y,z) = x^2+y^2+z^2 =25 \implies \nabla g =2 xi+2y j +2z k$ $\implies |\nabla g|=\sqrt {(2x)^2+(2y)^2+(2z)^2 }=\sqrt { 4 (x^2+y^2+z^2) }=\sqrt { 4 (25)}=10$ Now, $\ Normal \ Vector, n =\dfrac{\nabla g }{|\nabla g|}=\dfrac{xi+yj+zk}{5} \implies F \cdot n =\dfrac{x^2}{5} z+\dfrac{y^2}{5} z +\dfrac{z}{5} \\ d \sigma=\dfrac{10}{2z} \ d A$ We need to set up the integral for the above flux area as follows: $F_1=\iint_{S} F \cdot n \ d S=\iint_{R} (\dfrac{x^2}{5} z+\dfrac{y^2}{5} z +\dfrac{z}{5}) ( \dfrac{5}{z} ) \ dA = \int_{0}^{2 \pi} \int_{0}^{4} (r^2+1) r \ dr \ d \theta =\int_{0}^{2 \pi} 72 \ d \theta = 144 \pi$ We need to set up the integral for bottom flux area as follows: $F_2=\iint_{\ bottom} F \cdot n \ d \sigma=\iint_{R} (-1) \ dA = (-1) \times $ area of the circular region $=-16 \pi$ Total flux, $F=F_1+F_2=144 \pi+(-16 \pi) =128 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.