University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 26

Answer

$$\pi $$

Work Step by Step

$F \cdot n =\dfrac{2xy^2 }{\sqrt {x^2+y^2}}+4xy +1 $ Now, $$I=\iint_{S} F \cdot n \ dS \\=\iint_{R}\dfrac{2xy^2 }{\sqrt {x^2+y^2}}+4xy +1 \ dy \ dx \\=\int_0^{2 \pi} \int_{0}^{1} \dfrac{2 }{\sqrt {r^2}} \times (r \cos \theta)(r \sin \theta)^2+4 (r \cos \theta)(r \sin \theta) +1 \\=\int_0^{2 \pi} \int_{0}^{1} (2r^3 \sin^2 \theta \cos \theta+4r^3 \sin \theta \cos \theta +r) dr d \theta \\= \int_0^{2 \pi} [\dfrac{1}{2} \sin^2 \theta \cos \theta +\sin \theta \cos \theta+\dfrac{1}{2}] \ d \theta $$ Now, we will use a calculator So, $$I=\int_0^{2 \pi} [\dfrac{1}{2} \sin^2 \theta \cos \theta +\sin \theta \cos \theta+\dfrac{1}{2}] \ d \theta =\pi $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.