University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 21

Answer

$$\dfrac{1}{6} \pi a^3$$

Work Step by Step

$\vec{r_u} \times \vec{r_v}=a^2 \cos u \sin^2 v i+a^2 \sin u \sin^2 v j+a^2 \sin v \cos v k$ $$I=\iint_{S} F (u,v) \ d S=\int_{0}^{\pi/2} \int_{0}^{\pi/2} a^3 \sin v \cos^2 v \ dv \ du \\=(\dfrac{-1}{3} ) a^3 \int_{0}^{\pi/2}[\cos^3 v]_{0}^{\pi/2} \ du \\=(\dfrac{-1}{3} ) \times a^3 \int_{0}^{\pi/2}[\cos^3 (\pi/2) -\cos^3 (0) ] \ du \\=\dfrac{1}{3} \times a^3 [u]_{0}^{\pi/2}$$ Now, we evaluate the integral $I=\int_{0}^{\pi/2} \int_{0}^{\pi/2} a^3 \sin v \cos^2 v \ dv \ du \\=\dfrac{1}{6} \pi a^3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.