University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 28

Answer

$$-2 \pi$$

Work Step by Step

Since, $F \cdot n =-8u^3+2u$ Now, $$\iint_{S} F \cdot n \ dS=\int_0^{2 \pi} \int_{0}^{1} (-8u^3+2u) \ du \ dv \\=\int_0^{2 \pi} [-2u^4+u^2]_{0}^{1} \ d v \\= -\int_0^{2 \pi} \ dv \\=-[v]_0^{2 \pi} \\=-(2 \pi- 0) \\=-2 \pi$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.