University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 31

Answer

$$\dfrac{\pi a^3}{6}$$

Work Step by Step

Since, $|\nabla g|=\sqrt {4x^2+4y^2 +4z^2 }= 2a$ and $\iint_{S} F \cdot n=\dfrac{z^2}{a}$ Solve the flux of $F$. $$\iint_{S} F \cdot n \ d \theta =\iint_{R} (\dfrac{z^2}{a}) \times (\dfrac{a}{z}) \ dA \\=\iint_{R} ( z) dA \\=\int_{0}^{\pi/2} \int_{0}^{a} \sqrt {a^2-(x^2+y^2)} \ dx \ dy \\= \int_{0}^{\pi/2} \int_0^a \sqrt {a^2-r^2} \ dr \ d \theta \\= \dfrac{\pi a^3}{6}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.