University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 40

Answer

$$2$$

Work Step by Step

$$ g(x,y,z) = y -\ln x =0 \\ \nabla g =\dfrac{-i}{x}+j$$ $\implies |\nabla g|=\sqrt {(xi)^2+(yj)^2+(zk)^2 }=\sqrt {\dfrac{1}{x^2}+1}=\sqrt {\dfrac{x^2+1}{x^2}}$ Now, $$F \cdot n =\dfrac{2 xy}{\sqrt {1+x^2}} d \sigma \\=\sqrt {\dfrac{x^2+1}{x^2}} \ d A \\= \iint_{R} (\dfrac{2 xy}{\sqrt {1+x^2}}) ( \sqrt {\dfrac{x^2+1}{x^2}} ) \ du \ dv \\= \int_{0}^{1} \int_{1}^{e} 2y \ dx \ dz \\=\int_{1}^{e} \int_{0}^{1} (2) \times (\ln x \ dx) \ dz \\= \int_{1}^{e} 2 \ln x \ dx \\=2 [x \ln x -x]_{1}^{e} \\=2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.