University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 884: 32

Answer

$$0$$

Work Step by Step

Since, $n=\dfrac{2xi+2yj+2z k}{2 \sqrt {x^2+y^2+z^2}}=\dfrac{x}{a} i+\dfrac{y}{a} j + \dfrac{z}{a} k$ Thus, $F \cdot n=\dfrac{-x}{a}+\dfrac{-x}{a} \\ d \theta=\dfrac{2a}{2z} \ dA$ Solve the flux of $F$. $$\iint_{S} F \cdot n \ d \theta =\iint_{R} (\dfrac{-x}{a}+\dfrac{-x}{a}) \times (\dfrac{2a}{2z}) \ dA \\=\iint_{R} (0) \times (\dfrac{a}{z}) \ dA \\=\iint_{R} (0) \ dA \\=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.