Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Practice Exercises - Page 519: 101

Answer

$$\frac{2}{3}\ln \left| {1 + x} \right| + \frac{1}{6}\ln \left( {{x^2} - x + 1} \right) + \frac{{\sqrt 3 }}{3}{\tan ^{ - 1}}\left( {\frac{{2x - 1}}{{\sqrt 3 }}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{1 + {x^2}}}{{1 + {x^3}}}} dx \cr & {\text{Decomposing the integrand into partial fractions}} \cr & \frac{{1 + {x^2}}}{{1 + {x^3}}} = \frac{{1 + {x^2}}}{{\left( {1 + x} \right)\left( {1 - x + {x^2}} \right)}} = \frac{A}{{1 + x}} + \frac{{Bx + C}}{{1 - x + {x^2}}} \cr & \,\,\,{\text{Multiply by }}\left( {1 + x} \right)\left( {1 - x + {x^2}} \right) \cr & \,\,\,1 + {x^2} = A\left( {1 - x + {x^2}} \right) + \left( {Bx + C} \right)\left( {1 + x} \right) \cr & \,\,\,1 + {x^2} = A - Ax + A{x^2} + Bx + B{x^2} + C + Cx \cr & \,\,\,1 + {x^2} = \left( {A{x^2} + B{x^2}} \right) + \left( { - Ax + Bx + Cx} \right) + A + C \cr & \,\,{\text{Equating coefficients }}A + B = 1,\,\,\,\, - A + B + C = 0,\,{\text{ }}A + C = 1 \cr & \,\,{\text{Solving the system of equations with a calculator, we obtain}} \cr & \,\,\,A = \frac{2}{3},\,\,B = \frac{1}{3},\,\,C = \frac{1}{3},\,\, \cr & {\text{then}}{\text{,}} \cr & \,\,\,\,\frac{{1 + {x^2}}}{{\left( {1 + x} \right)\left( {1 - x + {x^2}} \right)}} = \frac{A}{{1 + x}} + \frac{{Bx + C}}{{1 - x + {x^2}}} = \frac{2}{{3\left( {1 + x} \right)}} + \frac{{x + 1}}{{3\left( {1 - x + {x^2}} \right)}} \cr & \cr & \int {\frac{{1 + {x^2}}}{{1 + {x^3}}}} dx = \int {\frac{2}{{3\left( {1 + x} \right)}}} dx + \int {\frac{{x + 1}}{{3\left( {1 - x + {x^2}} \right)}}} dx \cr & = \frac{2}{3}\int {\frac{1}{{1 + x}}} dx + \frac{1}{3}\int {\frac{{x + 1}}{{{x^2} - x + 1}}} dx \cr & \cr & {\text{Integrating }}\int {\frac{{x + 1}}{{{x^2} - x + 1}}} dx{\text{ by completing the square}} \cr & \int {\frac{{x + 1}}{{{x^2} - x + 1}}} dx = \int {\frac{{x + 1}}{{{x^2} - x + \frac{1}{4} + \frac{3}{4}}}} dx = \int {\frac{{x + 1}}{{{{\left( {x - 1/2} \right)}^2} + {{\left( {\sqrt 3 /2} \right)}^2}}}} dx \cr & u = x - 1/2,\,\,\,du = dx \cr & = \int {\frac{{u + 3/2}}{{{u^2} + {{\left( {\sqrt 3 /2} \right)}^2}}}} du = \int {\frac{u}{{{u^2} + {{\left( {\sqrt 3 /2} \right)}^2}}}} du + \int {\frac{{3/2}}{{{u^2} + {{\left( {\sqrt 3 /2} \right)}^2}}}} du \cr & = \frac{1}{2}\ln \left( {{u^2} + {{\left( {\sqrt 3 /2} \right)}^2}} \right) + \frac{3}{2}\left( {\frac{2}{{\sqrt 3 }}} \right){\tan ^{ - 1}}\left( {\frac{{2u}}{{\sqrt 3 }}} \right) + C \cr & {\text{replace }}u = x - 1/2 \cr & = \frac{1}{2}\ln \left( {{x^2} - x + 1} \right) + \frac{3}{2}\left( {\frac{2}{{\sqrt 3 }}} \right){\tan ^{ - 1}}\left( {\frac{{2\left( {x - 1/2} \right)}}{{\sqrt 3 }}} \right) + C \cr & = \frac{1}{2}\ln \left( {{x^2} - x + 1} \right) + \sqrt 3 {\tan ^{ - 1}}\left( {\frac{{2x - 1}}{{\sqrt 3 }}} \right) + C \cr & {\text{Then}}{\text{,}} \cr & \frac{2}{3}\int {\frac{1}{{1 + x}}} dx + \frac{1}{3}\int {\frac{{x + 1}}{{{x^2} - x + 1}}} dx \cr & \to = \frac{2}{3}\ln \left| {1 + x} \right| + \frac{1}{3}\left( {\frac{1}{2}\ln \left( {{x^2} - x + 1} \right) + \sqrt 3 {{\tan }^{ - 1}}\left( {\frac{{2x - 1}}{{\sqrt 3 }}} \right)} \right) + C \cr & = \frac{2}{3}\ln \left| {1 + x} \right| + \frac{1}{6}\ln \left( {{x^2} - x + 1} \right) + \frac{{\sqrt 3 }}{3}{\tan ^{ - 1}}\left( {\frac{{2x - 1}}{{\sqrt 3 }}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.