Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.1 - Extreme Values of Functions - Exercises 4.1 - Page 192: 68

Answer

a. $f'(0)$ does not exist. b. $f'(3)$ does not exist. c. $f'(-3)$ does not exist. d. At $x=\pm\sqrt 3$, $f(x)=6\sqrt 3$ local maxima. At $x=0, \pm3$, $f(x)=0$ minima.

Work Step by Step

Given the function $f(x)=|x^3-9x|=\begin{cases} x^3-9x\hspace1cm -3\leq x\leq0, x\geq3 \\-x^3+9x\hspace1cm 0\leq x\leq3, x\leq-3 \end{cases}$, we can find its derivative as $f'(x)=\begin{cases} 3x^2-9\hspace1cm -3\lt x\lt0, x\gt3 \\-3x^2+9\hspace1cm 0\lt x\lt3, x\lt-3 \end{cases}$ a. At $x=0$, $\lim_{x\to0^-}f'(x)=-9$ while $\lim_{x\to0^+}f'(x)=9$, thus $f'(0)$ does not exist. b. At $x=3$, $\lim_{x\to3^-}f'(x)=-3(3)^2+9=-18$ while $\lim_{x\to3^+}f'(x)=3(3)^2-9=18$, thus $f'(3)$ does not exist. c. At $x=-3$, $\lim_{x\to-3^-}f'(x)=-3(-3)^2+9=-18$ while $\lim_{x\to-3^+}f'(x)=3(-3)^2-9=18$, thus $f'(-3)$ does not exist. d. The critical points can be found when $y'=0$ or undefined which happens when $x=\pm\sqrt 3, 0, \pm3$. The domain of the function is $(-\infty,\infty)$ and there are no endpoints. At $x=\pm\sqrt 3$, $f(x)=|(\sqrt 3)^3-9(\sqrt 3)|=6\sqrt 3$ and we can identify they are local maxima (use local test points as necessary) as shown in the figure. At $x=0, \pm3$, $f(x)=0$ and we can identify they are minima (use local test points as necessary) as shown in the figure.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.