Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.5 - Continuity - Exercises 2.5 - Page 85: 41

Answer

Set $f( 1 )=\displaystyle \frac{3}{2}$

Work Step by Step

$f $ is not defined for $s=\pm1$, and $f$ is continuous everywhere else. We check if $\displaystyle \lim_{s\rightarrow 1}f(s)=L$ exists, and if it does, we can define the continuous extension of $f$ at $s=1$ as $F(s)=\left\{\begin{array}{ll} f(s) , & \text{if }s\neq 1\\ L, & \text{if }s=1 \end{array}\right.$ $L= \displaystyle \lim_{s\rightarrow 1}f(s)= \displaystyle \lim_{x\rightarrow 3}\frac{s^{3}-1}{s^{2}-1}\quad $ ... recognize difference of cubes, difference of squares $= \displaystyle \lim_{s\rightarrow 1}\frac{(s-1)(s^{2}+s+1)}{(s-1)(s+1)}\quad $...cancel common term $= \displaystyle \lim_{s\rightarrow 1}\frac{s^{2}+s+1}{s+1}$ ... evaluate directly, $L=\displaystyle \frac{3}{2}$ The limit exits at $s=1,$ so, if we redefine $h$, $f(s)=\left\{\begin{array}{ll} \dfrac{s^{3}-1}{s^{2}-1} , & \text{if }s\neq 1 \\\\ 3/2, & \text{if }s=1 \end{array}\right.$ it becomes continuous.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.