Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.1 - The Indefinite Integral - Exercises - Page 960: 63

Answer

$320\ \mathrm{f}\mathrm{t}/\mathrm{s}$ downward.

Work Step by Step

Define "up" as the positive direction of motion. Acceleration is the derivative of velocity $a(t)=v'(t)=-32\ \mathrm{f}\mathrm{t}/\mathrm{s}^{2}$ $v(t)=\displaystyle \int(-32)dt =-32t+C\ \mathrm{f}\mathrm{t}/\mathrm{s}$ To find C, use the given information: $v(0)=0$ $v(t)=-32t+C$ $0=0+\mathrm{C}$ $C=0$ Thus, $v(t)=-32t\ \mathrm{f}\mathrm{t}/\mathrm{s}.$ After $t=10$ seconds, $v(10)= -32(10) =-320\ \mathrm{f}\mathrm{t}/\mathrm{s}$ The stone is traveling $320\ \mathrm{f}\mathrm{t}/\mathrm{s}$ downward.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.