Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 2 - Nonlinear Functions - 2.3 Polynomial and Rational Functions - 2.3 Exercises - Page 75: 34

Answer

$$ y=\frac{3-2x}{4x+20} $$ We obtain that : Asymptotes: $y=-\frac{1}{2} $ and $ x=-5$ $x$-intercept: $\frac{3}{2}$ the value when $y= 0$. $y$-intercept: $\frac{3}{20}$ the value when $x= 0$

Work Step by Step

$$ y=\frac{3-2x}{4x+20} $$ The value $ x=-5$makes the denominator 0, but not the numerator, so the line $ x=-5$ is a vertical asymptote. To find a horizontal asymptote, let x get larger and we obtain : $$ y=\lim\limits_{x \to \infty}\frac{3-2x}{4x+20}=-\frac{1}{2} $$ This means that the line $y=-\frac{1}{2} $ is a horizontal asymptote. So, we have: Asymptotes: $y=-\frac{1}{2} $ and $ x=-5$ $x$-intercept: $\frac{3}{2}$ the value when $y= 0$. $y$-intercept: $\frac{3}{20}$ the value when $x= 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.