Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 535: 54

Answer

Converges

Work Step by Step

$\displaystyle \int_0^\pi \frac{\sin^2x}{\sqrt{x}}\ dx$ Find a greater-valued function: $\displaystyle \frac{\sin^2x}{\sqrt{x}} < \frac{2}{\sqrt{x}}$ (Recall: $\displaystyle 0 \le \sin^2x \le 1$, so we can substitute with a higher value in numerator to get a greater-valued function) $\displaystyle \int_0^\pi \frac{2}{\sqrt{x}}\ dx = 2\lim\limits_{t \to 0} \int_t^\pi \frac{1}{\sqrt{x}}\ dx$ $= \displaystyle 2\lim\limits_{t \to 0} \left[2\sqrt{x}\right]_t^\pi = 4\lim\limits_{t \to 0}(\sqrt{\pi}-\sqrt{t}) = 4\sqrt{\pi}$ We know that the greater-valued function $\displaystyle \frac{2}{\sqrt{x}}$ converges to a value, so therefore by the convergence theorem, $\displaystyle \int_0^\pi \frac{\sin^2x}{\sqrt{x}}\ dx$ converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.