Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 535: 51

Answer

The integral diverges.

Work Step by Step

$\displaystyle \int^{\infty}_{1} \frac{x+1}{\sqrt{x^4-x}}\ dx$ We have: $\displaystyle \frac{x+1}{\sqrt{x^4-x}} > \frac{x}{\sqrt{x^4-x}} > \frac{x}{\sqrt{ x^4}} = \frac{x}{x^2} = \frac{1}{x}$ From the textbook, we know that $\displaystyle \int^{\infty}_{1} \frac{1}{x^p}\ dx$ diverges when $\displaystyle p \le 1$. Since the lesser-valued function $\displaystyle \int^{\infty}_{1} \frac{1}{x}\ dx$ diverges, then by the comparison theorem, $\displaystyle \int^{\infty}_{1} \frac{x+1}{\sqrt{x^4-x}}\ dx$ diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.