Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 535: 52

Answer

Convergent

Work Step by Step

$\displaystyle \int_0^{\infty}\frac{\arctan x}{2+e^x}\ dx$ Note the following: $\displaystyle \frac{\arctan x}{2+e^x} < \frac{\arctan x}{e^x} \le \frac{\pi}{2e^x} < \frac{\pi}{2x^2}$ From the textbook, we know that $\displaystyle \int_0^{\infty}\frac{1}{x^p}\ dx$ converges when $\displaystyle p>1$. Let's split the question into two integrals: $\displaystyle \int_0^{\infty}\frac{\arctan x}{2+e^x}\ dx = \int_0^{1}\frac{\arctan x}{2+e^x}\ dx + \int_1^{\infty}\frac{\arctan x}{2+e^x}\ dx$ $\displaystyle \int_0^{1}\frac{\arctan x}{2+e^x}\ dx$ converges to some value, and since we do not need to know the value we focus on the convergence of $\displaystyle \int_1^{\infty}\frac{\arctan x}{2+e^x}\ dx$. Above, we showed that $\displaystyle \frac{\pi}{2x^2}$ is larger than $\displaystyle \frac{\arctan x}{2+e^x}$ when $\displaystyle x \ge 1$, and $\displaystyle \frac{\pi}{2}\int_1^{\infty}\frac{1}{x^2}\ dx$ converges to a value. Therefore, by the comparison theorem, the lesser-valued $\displaystyle \int_1^{\infty}\frac{\arctan x}{2+e^x}\ dx$ also converges. As a result, the integral in question is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.