Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 535: 38

Answer

$$ \int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta $$ Observe that the given integral is improper because $ f(\theta)= \frac{\cos \theta}{\sqrt{\sin \theta}} $ has the vertical asymptote $\theta =0 $. The infinite discontinuity occurs at the left endpoint of $ [0, \pi / 2] $ The given improper integral is convergent and its value is $$ \int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta = 2 $$

Work Step by Step

$$ \int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta $$ Observe that the given integral is improper because $ f(\theta)= \frac{\cos \theta}{\sqrt{\sin \theta}} $ has the vertical asymptote $\theta =0 $. Since the infinite discontinuity occurs at the left endpoint of $ [0, \pi / 2] $ , we must use part (b) of Definition 3 : $$ \begin{split} \int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta & = \lim _{t \rightarrow 0 ^{+}} \int_{t}^{\pi / 2} \sin ^{-\frac{1}{2 }}\theta (\cos \theta d \theta ) \\ & =\lim _{t \rightarrow 0 ^{+}} \int_{t}^{\pi / 2} \sin ^{-\frac{1}{2 }}\theta ( d \sin \theta ) \\ & =\lim _{t \rightarrow 0^{+}}\left[2 \sin ^{\frac{1}{2 }}\theta \right]_{t}^{\pi / 2} \\ & =2 \lim _{t \rightarrow 0^{+}}\left[ \sin ^{\frac{1}{2 }}(\pi / 2) -\sin ^{\frac{1}{2 }} t \right] \\ & =2 \lim _{t \rightarrow 0^{+}}\left[ 1 -\sin ^{\frac{1}{2 }} t \right]\\ & = 2 \end{split} $$ Thus the given improper integral $$ \int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta = 2 $$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.