Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.7 - Triple Integrals in Cylindrical Coordinates - 15.7 Exercise - Page 1044: 28

Answer

$\dfrac{\pi^2 ka^4}{4}$

Work Step by Step

Since, $m=kv=\\\int_Bk\sqrt{x^2+y^2} dV$ This implies that $m=\int_0^{2\pi} \int_{0}^{a}\int_{-\sqrt{a^2-r^2}}^{\sqrt{a^2-r^2}} (kr) \times (r) dz dr d\theta=\int_0^{2\pi} \int_{0}^{a}\int_{-\sqrt{a^2-r^2}}^{\sqrt{a^2-r^2}} kr^2 dz dr d\theta$ and $\int_0^{2\pi} \int_{0}^{a}\int_{-\sqrt{a^2-r^2}}^{\sqrt{a^2-r^2}} kr^2 dz dr d\theta =2\pi \int_{0}^{a} 2kr^2 \sqrt{a^2-r^2} dr$ Consider $r=a\sin b$ and $dr=a \cos b db$ Thus, $m=2\pi \int_{0}^{\pi/2} 2ka^2 \sin^2 b \sqrt{a^2-a^2 \sin^2 b} \times a \cos b db=\pi ka^4\int_0^{\pi/2} \times (\sin^2 2b db) $ and, $\dfrac{1}{2} \pi ka^4\int_0^{(\pi/2)} 1-\cos 4b db=\dfrac{ \pi ka^4}{2}[b-\dfrac{\sin 4b}{4}]_0^{\pi/2}$ Hence, $m=\dfrac{1}{4}\pi^2 a^4K$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.