Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.7 - Triple Integrals in Cylindrical Coordinates - 15.7 Exercise - Page 1044: 23

Answer

$\dfrac{4\pi}{3}(\sqrt 2 -1)$

Work Step by Step

Here, we have $V=\int_0^{2\pi} \int_{0}^{1}\int_{r}^{\sqrt{2-r^2}} r dz dr d\theta$ and $x=r \cos \theta; y=r \sin \theta, z=z$ This implies that $=\int_0^{2\pi} \int_{0}^{1}[rz]_{r}^{\sqrt{2-r^2}} r dz dr d\theta=\int_0^{2\pi} \int_{0}^{1}(r\sqrt{2-r^2}-r^2) dr d\theta$ Consider $p=2-r^2$ and $dp=-2rdr$ Then, we get $V=\int_0^{2\pi} [\int_{1}^{2} (\dfrac{1}{2}) \sqrt p dp -\int_0^1 r^2 dr] d\theta$ or, $=\int_0^{2\pi} [\dfrac{1}{3}(2 \sqrt 2 -1-1) d\theta$ or, $=\int_0^{2\pi} (\dfrac{2}{3}) (\sqrt 2 -1) d\theta$ or, $=\dfrac{2}{3}(\sqrt 2 -1)[\theta]_0^{2\pi}$ Hence, $V=\dfrac{4\pi}{3}(\sqrt 2 -1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.