Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.7 - Triple Integrals in Cylindrical Coordinates - 15.7 Exercise - Page 1044: 21

Answer

$\dfrac{2\pi}{5}$

Work Step by Step

Consider $I=\iiint_Ex^2dV$ Here, we have $x=r \cos \theta; y=r \sin \theta, z=z$ Then, we get $\int_0^{2\pi} \int_{0}^{1}\int_{0}^{2r} x^2 r dz dr d\theta=\int_0^{2\pi} \int_{0}^{1}\int_{0}^{2r} (r\cos \theta)^2 r dz dr d\theta$ and $=\int_0^{2\pi} \int_{0}^{1}[r^3 \cos^2 \theta \times (z)]_{0}^{2r} dr d\theta$ $=\int_0^{2\pi} \int_{0}^{1}2r^4 \times (\cos^2 \theta ) dr d\theta$ $=\int_0^{2\pi} \times (\dfrac{2}{5}) \times (\cos^2 \theta) d\theta$ $=(\dfrac{2}{10}) \int_0^{2\pi} (1+\cos 2 \theta) d\theta$ $=(\dfrac{2}{10}) [\theta+\dfrac{\sin 2 \theta}{2}]_0^{2\pi}$ $=\dfrac{2\pi}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.