Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.7 - Triple Integrals in Cylindrical Coordinates - 15.7 Exercise - Page 1044: 19

Answer

$\dfrac{8\pi}{3}+\dfrac{128}{15}$

Work Step by Step

The given integral is $I=\iiint_E(x+y+z)dV$ We know that the Conversion of rectangular to cylindrical coordinate system gives $r^2=x^2+y^2;tan \theta=\dfrac{y}{x} ; z=z$ and $x=r \cos \theta; y=r \sin \theta, z=z$ This implies that $\iiint_E(x+y+z)dV=\int_0^{\pi/2} \int_{0}^{2}\int_{0}^{4-r^2} (x+y+z) r dr dz d\theta$ $=\int_0^{\pi/2} \int_{0}^{2}\int_{0}^{4-r^2} (r \cos \theta+r \sin \theta+z) r dr dz d\theta$ This implies that $=\int_0^{\pi/2} \int_{0}^{2}\int_{0}^{4-r^2}[r^2( \cos \theta+ \sin \theta)+rz] dz dr d\theta$ $=\int_0^{(\pi/2)} \int_{0}^{2}[r^2( \cos \theta+ \sin \theta)(z)+\dfrac{1}{2}(rz^2)]_{0}^{4-r^2} drd\theta$ $=\int_0^{(\pi/2)}[\dfrac{64}{15}(\cos \theta+ \sin \theta)+\dfrac{16}{3}] d\theta$ Thus, we have $\iiint_E(x+y+z)dV=\dfrac{8\pi}{3}+\dfrac{128}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.