Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.7 - Triple Integrals in Cylindrical Coordinates - 15.7 Exercise - Page 1044: 25

Answer

a) $\frac{512\pi}{3}$ b)Centroid: $(\bar x, \bar y, \bar z)=(0,0,\frac{23}{2})$

Work Step by Step

a) $z=24-x^{2}-y^{2}$ becomes $z=24-r^{2}$ and $z=2\sqrt {x^{2}+y^{2}}$ becomes $z=2r$ Solve for $r$: $24-r^{2}=2r$ $r^{2}+2r-24=0$ $(r+6)(r-4)=0$ $r=-6,4$ But $r=-6$ is extraneous. So $r=4$. The bounds for region E are $E=\{(r,\theta,z)|\ 0\leq r \leq 4, 0 \leq \theta \leq 2\pi, 2r \leq z \leq 24-r^{2}\}$ The volume of the region E is: $V(S)=\iiint_E dV=\int_{0}^{2\pi}\int_{0}^{4}\int_{2r}^{24-r^{2}}r\ dz\ dr\ d\theta$ $=\int_{0}^{2\pi}\int_{0}^{4}r(z)|^{24-r^{2}}_{2r}dr\ d\theta$ $=\int_{0}^{2\pi}\int_{0}^{4}r(24-r^2-2r)dr\ d\theta$ $=\int_{0}^{2\pi}\int_{0}^{4}(24r-r^3-2r^2)dr\ d\theta$ $=\int_{0}^{2\pi}(\frac{24r^2}{2}-\frac{r^4}{4}-\frac{2r^3}{3})|^4_0\ d\theta$ $=\int_{0}^{2\pi}(12r^2-\frac{r^4}{4}-\frac{2r^3}{3})|^4_0\ d\theta$ $=\int_{0}^{2\pi}(12\times 4^2-\frac{4^4}{4}-\frac{2\times4^3}{3})\ d\theta$ $=(12\times 4^2-\frac{4^4}{4}-\frac{2\times4^3}{3})\int_{0}^{2\pi}d\theta$ $=(3\times4\times 4^2-4^3-\frac{2\times4^3}{3})(\theta)|^{2\pi}_{0}$ $=2\pi(3\times 4^3-4^3-\frac{2\times4^3}{3})$ $=2\pi(2\times 4^3-\frac{2\times4^3}{3})$ $=2\pi(\frac{6\times4^3}{3}-\frac{2\times4^3}{3})$ $=2\pi(\frac{4\times4^3}{3})$ $=2\pi\times\frac{4\times64}{3}$ $=2\pi\times\frac{256}{3}$ $=\frac{512\pi}{3}$ b) $(\bar x, \bar y, \bar z) = (\frac{\iiint_E x\ dV}{\iiint_E dV},\frac{\iiint_E y\ dV}{\iiint_E dV},\frac{\iiint_E z\ dV}{\iiint_E dV})$ $= (\frac{\int_{0}^{2\pi}\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr\ d\theta}{2\pi(\frac{4\times4^3}{3})}, \frac{\int_{0}^{2\pi}\int_{0}^{4}\int_{2r}^{24-r^{2}}r(sin\theta)\times r\ dz\ dr\ d\theta}{2\pi(\frac{4\times4^3}{3})}, \frac{\int_{0}^{2\pi}\int_{0}^{4}\int_{2r}^{24-r^{2}}z\times r\ dz\ dr\ d\theta}{2\pi(\frac{4\times4^3}{3})})$ $= (\frac{\int_{0}^{2\pi}cos\theta\ d\theta\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})}, \frac{\int_{0}^{2\pi}sin\theta\ d\theta\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})}, \frac{\int_{0}^{2\pi}d\theta\times\int_{0}^{4}\int_{2r}^{24-r^{2}}z\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})})$ $= (\frac{(cos\theta)|^{2\pi}_{0}\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})}, \frac{(sin\theta)|^{2\pi}_{0}\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})}, \frac{2\pi\times\int_{0}^{4}(r\int_{2r}^{24-r^{2}}z\ dz)\ dr}{2\pi(\frac{4\times4^3}{3})})$ $= (\frac{(cos(2\pi)-cos0)\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})}, \frac{(sin(2\pi)-sin0)\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})}, \frac{\int_{0}^{4}(r(z^{2}/2)|_{2r}^{24-r^{2}})\ dr}{\frac{4\times4^3}{3}})$ $= (\frac{(1-1)\times\int_{0}^{4}\int_{2r}^{24-r^{2}}r(cos\theta)\times r\ dz\ dr}{2\pi(\frac{4\times4^3}{3})},\ 0, \frac{\int_{0}^{4}(\frac{r}{2}(z^{2})|_{2r}^{24-r^{2}})\ dr}{\frac{4\times4^3}{3}})$ $= (0,\ 0,\frac{\int_{0}^{4}(r((24-r^2)^2-(2r)^2))\ dr}{2\times\frac{4\times4^3}{3}})$ $= (0,\ 0,\frac{\int_{0}^{4}r(24-r^2)^2\ dr\ -\int_{0}^{4}r(2r)^2\ dr}{2\times\frac{4\times4^3}{3}})$ $= (0,\ 0,\frac{\int_{0}^{4}r(24-r^2)^2\ dr\ -\int_{0}^{4}r(4r^2)\ dr}{2\times\frac{4\times4^3}{3}})$ $= (0,\ 0,\frac{\int_{0}^{4}r(24-r^2)^2\ dr\ -\int_{0}^{4}r(4r^2)\ dr}{2\times\frac{4\times4^3}{3}})$ Perform u-substitution: $u=24-r^2$ $du=-2r\ dr$ $\frac{du}{-2}=r\ dr$ $u(4)=24-4^2=24-16=8$ $u(0)=24-0^2=24$ $(0,\ 0,\frac{\int_{0}^{4}r(24-r^2)^2\ dr\ -\int_{0}^{4}r(4r^2)\ dr}{2\times\frac{4\times4^3}{3}})$ $=(0,\ 0,\frac{\int_{24}^{8}u^2\times\frac{du}{-2}\ -\int_{0}^{4}(4r^3)\ dr}{2\times\frac{4\times4^3}{3}})$ $=(0,\ 0,\frac{\frac{1}{-2}\int_{24}^{8}u^2\ du\ -(r^4)|_{0}^{4}}{2\times\frac{4\times4^3}{3}})$ $=(0,\ 0,\frac{\frac{1}{-2}(\frac{u^3}{3})|_{24}^{8}\ -4^4}{2\times\frac{4\times4^3}{3}})$ $=(0,\ 0,\frac{\frac{1}{-2\times3}(u^3)|_{24}^{8}\ -4^4}{2\times\frac{4\times4^3}{3}})$ $=(0,\ 0,\frac{\frac{1}{-2\times3}(8^3-24^3)\ -4^4}{2\times\frac{4^4}{3}})$ $=(0,\ 0,\frac{\frac{1}{-2\times3}(4^3\times2^3-4^3\times2^3\times3^3)}{2\times\frac{4^4}{3}}-\frac{4^4}{2\times4^4/3})$ $=(0,\ 0,\frac{4^3\times2^3(1-3^3)}{-2\times3\times2\times\frac{4^4}{3}}-\frac{1}{2/3})$ $=(0,\ 0,\frac{2(1-3^3)}{-4}-\frac{3}{2})$ $=(0,\ 0,\frac{(3^3-1)}{2}-\frac{3}{2})$ $=(0,\ 0,\frac{(27-1)}{2}-\frac{3}{2})$ $=(0,\ 0,\frac{23}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.